Organochromium π-complexes

IV *. The preparation and reactions of (η^{5}-pentadienyl) $\mathrm{Cr}^{\mathrm{II}}$ complexes.
 Crystal structure of $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{3}$

P.W. Jolly ${ }^{\star}$, C. Krüger and U. Zakrzewski
Max-Planck-Institut für Kohlenforschung, W-4330 Mülheim a.d. Ruhr (Germany)

(Received February 25th, 1991)

Abstract

(η^{5}-2,4-Dimethylpentadienyl) $\mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ (prepared from $\mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{2}$ and $\mathrm{K}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$) reacts with allylmagnesium chloride to give initially $\left(\eta^{3}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$, which above $-30^{\circ} \mathrm{C}$ undergoes phosphine elimination to give ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{3}$, the structure of which has been determined by X-ray diffraction. In contrast, systems containing either the bidentate ligand bis(dimethylphosphino)ethane or the cyclopentadienyl ligand react with allylmagnesium chloride to give the diamagnetic compounds $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe} \mathrm{P}_{2}\right)$ and $\mathrm{Cp}\left(\boldsymbol{\eta}^{3}-\right.$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$.

Introduction

Although the firsi η^{5}-pentadienyl complex of chromium, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}$ (1), was isolated in 1968 and the open-chromocene nature confirmed by a crystal structure determination of the related derivative ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}$ (2), the subsequent development in this area has been slow and is apparently limited to the observations that 2 reacts with donor ligands such as $\mathrm{CO}, \mathrm{CNC}_{4} \mathrm{H}_{9}$-t and $\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}$ with displacement of both organic ligands and with $\left(\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{3} \mathrm{NHCl}-\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}$ to give ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right) \mathrm{Cl}$ (3), which can also be prepared directly from $\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2} \mathrm{Cl}_{2}$ and $\mathrm{K}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ [1-3]. In addition, $\mathrm{Cp}\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}$ was prepared by treating $\left[\mathrm{CpCrCl}_{2}\right]_{2}$ or $\left[\mathrm{CpCrOC}_{4} \mathrm{H}_{9}-\mathrm{t}\right]_{2}$ with $\mathrm{K}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ or treating CrCl_{2} with $\mathrm{NaCp} / \mathrm{K}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$. This compound and 2 have been studied as supported catalysts for the polymerization of ethylene [4-6].

As part of a study of the organometallic chemistry of divalent chromium we

[^0]turned our attention to the η^{5}-pentadienyl group, and report here the preparation and reaction of complexes containing this group and P-donor ligands.

Results and discussion

Our initial efforts to prepare mono $\left(\eta^{5}\right.$-pentadienyl) Cr -complexes were unsuccessful: $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}$ (1) was found to react with HCl or allyl chloride even at $-78^{\circ} \mathrm{C}$ with displacement of both pentadienyl groups to give CrCl_{2}, and attempts to prepare $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}$ by treating K -2,4-dimethylpentadienyl with either $\mathrm{Cr}(\mathrm{THF})_{3} \mathrm{Cl}_{3}$ and allylmagnesium chloride or with $\left[\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{CrCl}\right]_{2}$ led instead to reduction of the chromium and formation of a mixture of $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{3} \mathrm{Cr}$ and $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\left(\mu-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}$. However, by using a procedure analogous to that developed by Ernst et al. for the preparation of 3 [3], we were able to make the red-brown ($\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$)Cr-compounds 4 and 5 from the appropriate $\mathrm{Cr}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{2}$ species and K -2,4-dimethylpentadienyl in THF at $-30^{\circ} \mathrm{C}$ (eq. 1).

Red solutions, which presumably contain related compounds, are also formed upon treatment either of $\mathrm{Cr}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{2}$ with $\mathrm{K}-\mathrm{C}_{5} \mathrm{H}_{7}$ or of $\left[\mathrm{Cr}\left({ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right) \mathrm{Cl}_{2}\right]_{2}$ with $\mathrm{K}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$ but in both cases the products decompose above $-65^{\circ} \mathrm{C}$ and could not be obtained analytically pure. 4 and 5 are thermolabile, and break down above $-30^{\circ} \mathrm{C}$ to give ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}$ (2).

The bis(dimethylphosphino)ethane-stabilized derivative 3 reacts with allylmagnesium chloride to give the diamagnetic compound 6 (eq. 2) the structure of which has been deduced from the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (see Experimental section).

The analogous reaction between allylmagnesium chloride and 4 or 5, however, was found to take a different course. The initial product of the reaction involving 4 is a paramagnetic compound whose elemental analysis and the presence of a band

8
at $1640 \mathrm{~cm}^{-1}$ in the IR spectrum supported its formulation as the ($\eta^{3}-$ allyl $)_{2} \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$ species 7 , in which the hapticity of the 2,4 -dimethylpentadienyl group has been reduced. (A rearrangement involving a change in the hapticity of the η^{3}-allyl group is less likely on energetic grounds; the loss of resonance energy in going from an $\boldsymbol{\eta}^{3}$ - to an η^{3}-pentadienyl group is less than that on going from an η^{3} to an η^{1}-allyl group [7].) Compound 7 is unstable, and reacts further above $-30^{\circ} \mathrm{C}$ with loss of a donor ligand to give the compound 8 (eq. 3), whose crystal structure has been established by an X-ray diffraction study (see below). An analogous

reaction of the $\mathrm{PMe}_{2} \mathrm{Ph}$-stabilized compound 5 with allylmagnesium chloride led directly to $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{2} \mathrm{Ph}(9)$ even at $-60^{\circ} \mathrm{C}$.

We described in an earlier publication the syntheses of $\left(\eta^{3} \text {-allyl }\right)_{2} \mathrm{Cr}\left(\mathrm{PR}_{3}\right)_{2}$ species related to $7[8]$ and a compound having a structure similar to 8 , viz. $\left(\eta^{5}-1,2-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}(9)$, is believed to be the final product of the reaction between $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$ and 2-butyne (eq. 4). Furthermore, phosphine-induced hapticity changes similar to that shown in equation 3 have been described in the literature, and an example, involving the (η^{5}-pentadienyl) Ru-species 10 is shown below (eq. 5). [9].

10
Compound 4 was found to react with potassium cyclooctadienyl with displacement of both P-donor ligands to give 11 (MS: $m / z 254, M^{+}$) in which two different η^{5}-organic ligands are bonded to the metal atom (eq. 6). The compound was, however, contaminated with ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}$ (2) and (η^{5}-cyclooctadienyl) ${ }_{2} \mathrm{Cr}$ and could not be obtained analytically pure.

That 4 reacts with allylmagnesium chloride to give 8 instead of the expected diamagnetic species $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$, analogous to 6 , must in part be the result of steric crowding in the target molecule. Bearing in mind that a cyclopentadienyl ligand is sterically less demanding than a 2,4 -dimethylpentadienyl ligand (the cone angles for the two have been estimated to be ca 136 and ca 180°, respectively, at an $\mathrm{M}-\mathrm{C}$-distance of ca $2.36 \AA[10]$), we decided to attempt to isolate $\mathrm{Cp}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$ (12). Although we were unable to prepare the required starting material $\left(\mathrm{CpCr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}\right)$, we were able to synthesize 12 in a one-flask
reaction from $\mathrm{Cr}(\mathrm{THF}) \mathrm{Cl}_{2}, \mathrm{PMe}_{3}, \mathrm{NaCp}$ and allylmagnesium chloride at -30° (eq. 7).

(7)

12
As expected, 12 is diamagnetic and relatively stable (decomposing above $-20^{\circ} \mathrm{C}$), showing no tendency either to rearrange with a change in the hapticity of the ring or to lose a phosphine ligand.

The crystal structure of $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{3}(8)$ was determined by an X-ray diffraction study. The molecular structure is shown in Fig. 1, and selected structural parameters and atomic fractional coordinates are listed in Tables 1 and 2. The chromium atom lies in a pseudo-trigonal planar environment defined by the P-atom and the mid-points of the allyl and pentadienyl planes (D1, D2). The two organic groups are arranged essentially parallel to each other (interplanar angle 5.6°) and are almost eclipsed. The chromium atom is situated equidistant from the C -atoms of both organic groups. The central C -atom of the allyl group is unusually close to the metal atom while the pentadienyl fragment exhibits torsion angles of 8.5° (C7-C8-C9-C10) and 6.9° (C11-C10-C9-C8).

Fig. 1. The molecular structure of $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{3}$ (8). D1 and D2 denote the mid-points of the allyl and cyclopentadienyl planes, respectively.

Table 1
Selected structural parameters for (η^{5}-2,4-dimethylpentadienyl) $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{3}$ (8) with esd's in parentheses

Bond lengths (\AA)		Bond angles $\left(^{\circ}\right.$)	
$\mathrm{Cr}-\mathrm{D} 1$	1.958	$\mathrm{D} 1-\mathrm{Cr}-\mathrm{D} 2$	133.1
$\mathrm{Cr}-\mathrm{D} 2$	1.569	$\mathrm{D} 1-\mathrm{Cr}-\mathrm{P}$	104.8
$\mathrm{Cr}-\mathrm{P}$	$2.367(1)$	$\mathrm{D} 2-\mathrm{Cr}-\mathrm{P}$	121.6
$\mathrm{Cr}-\mathrm{C} 4$	$2.220(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.3(3)$
$\mathrm{Cr}-\mathrm{C} 5$	$2.175(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$124.1(3)$
$\mathrm{Cr}-\mathrm{C} 6$	$2.259(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$128.0(3)$
$\mathrm{Cr}-\mathrm{C} 7$	$2.153(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{Cl1}$	$124.0(3)$
$\mathrm{Cr}-\mathrm{C} 8$	$2.136(3)$	$\mathrm{C}-\mathrm{C} 8-\mathrm{C} 12$	
$\mathrm{Cr}-\mathrm{C} 9$	$2.171(3)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 13$	$118.8(3)$
$\mathrm{Cr}-\mathrm{C} 10$	$2.174(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 12$	$118.0(3)$
$\mathrm{Cr}-\mathrm{C} 11$	$2.166(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13$	$116.9(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.391(5)$	$\mathrm{Cr}-\mathrm{P}-\mathrm{C} 1$	$117.3(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.388(5)$	$\mathrm{Cr}-\mathrm{P}-\mathrm{C} 2$	$119.6(1)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.416(4)$	$\mathrm{Cr}-\mathrm{P}-\mathrm{C} 3$	$115.4(1)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.427(4)$	$\mathrm{C} 1-\mathrm{P}-\mathrm{C} 3$	$117.1(1)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.421(4)$	$\mathrm{C} 2-\mathrm{P}-\mathrm{C} 2$	$99.8(2)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.406(4)$		$100.1(2)$
$\mathrm{C} 8-\mathrm{C} 12$	$1.516(4)$		$101.8(2)$
$\mathrm{C} 10-\mathrm{C} 13$	$1.511(4)$		
$\mathrm{P}-\mathrm{C} 1 / 2 / 3$	$1.822(4)$		

Experimental

All reactions were carried out under argon in anhydrous and oxygen-free solvents. K -2,4-dimethylpentadienyl and K -pentadienyl were prepared by treating the appropriate diene with potassium sand [10]. $\mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Cr}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{Cl}_{2}\right.$ and $\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2} \mathrm{Cl}_{2}$ were prepared from $\mathrm{Cr}(\mathrm{THF}) \mathrm{Cl}_{2}$ and the appropriate P-donor ligand [8]. ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right) \mathrm{Cl}$ (3) was prepared by treating $\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2} \mathrm{Cl}_{2}$ with $\mathrm{K}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}$. [3] ${ }^{1} \mathrm{H}$ NMR-, ${ }^{31} \mathrm{P}$ NMRand IR-spectra were recorded on Bruker WM 400, Bruker AC 200 and Nicolet FT-7199 instruments respectively. Microanalysis were carried out by Dornis and Kolbe, Microanalytical Laboratory, Mülheim a.d. Kuhr.
($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ (4)
A solution of K -2,4-dimethylpentadienyl in THF (25 ml) was added during 2 h to a suspension of $\mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{2}$, prepared from $\mathrm{Cr}(\mathrm{THF}) \mathrm{Cl}_{2}(1.74 \mathrm{~g}, 8.9 \mathrm{mmol})$ and $\mathrm{PMe}_{3}(1.9 \mathrm{ml}, 18 \mathrm{mmol})$ in diethyl ether (50 ml) and cooled to $-78^{\circ} \mathrm{C}$. The colour of the mixture changed from blue to red. The mixture was stirred at $-30^{\circ} \mathrm{C}$ for 12 h and then filtered and the filtrate evaporated to dryness at $-30^{\circ} \mathrm{C}$. The red-brown residue was washed with pentane ($3 \times 10 \mathrm{ml}$) at $-78^{\circ} \mathrm{C}$ and dried at this temperature under high vacuum. Yield 2.1 g (70% theory). Found: C, 47.3, H, 8.3; Cl, 10.3;, $\mathrm{Cr}, 15.3$; P, 18.2. $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{ClCrP}_{2}$ calc.: $\mathrm{C}, 46.6 ; \mathrm{H}, 8.7$; $\mathrm{Cl}, 10.6$; $\mathrm{Cr}, 15.5 ; \mathrm{P}, 18.5 \%$. $\operatorname{IR}\left(\mathrm{KBr},-60^{\circ} \mathrm{C}\right): \nu 3060,3040,1490,1420,1380,1280,960 \mathrm{~cm}^{-1}$.

Table 2
Atomic fractional coordinates with standard deviations in parentheses and equivalent isotropic thermal parameters (\AA^{2}) for 8

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Cr	0.1553(1)	0.1602(1)	0.2725(1)	0.014
P	0.2944(1)	0.1923(1)	0.1369(1)	0.018
C(1)	$0.4691(4)$	0.2625(3)	$0.1804(3)$	0.030
C(2)	0.3580(5)	0.0805(3)	0.0749(4)	0.040
C(3)	$0.2016(5)$	0.2637(4)	0.0092(4)	0.047
C(4)	0.0197(4)	0.2988(2)	0.2709(3)	0.027
C(5)	0.1251 (4)	0.2894(2)	0.3758(3)	0.023
C(6)	0.2774(4)	0.2862(2)	0.3846(3)	0.026
C(7)	0.0390(3)	0.0511(2)	0.1489(3)	0.019
C(8)	-0.0314(3)	0.0595(2)	0.2396(2)	0.018
C(9)	0.0451(3)	0.0516(2)	0.3581(3)	0.017
C(10)	$0.2017(3)$	0.0471(2)	0.4078(2)	0.019
C(11)	0.3089 (3)	0.0394(2)	0.3443(3)	0.021
C(12)	-0.1954(3)	0.0876(3)	0.2116(3)	0.026
C(13)	$0.2561(4)$	0.0672(3)	0.5350(3)	0.025
H(1a)	0.530(4)	0.232(3)	0.249(3)	0.039
H(1b)	0.527(4)	0.250(2)	0.121(3)	0.031
H(1c)	0.463(5)	0.324(3)	0.204(4)	0.067
H(2a)	0.420(4)	0.042(3)	0.139(4)	0.058
H(2b)	0.415(4)	0.093(3)	0.026(3)	0.043
H(2c)	$0.273(5)$	0.045(3)	0.033(4)	0.063
H(3a)	0.270(4)	0.268(3)	-0.039(3)	0.046
H(3b)	$0.156(6)$	$0.325(4)$	0.030(4)	0.092
H(3c)	0.124(5)	0.232(3)	-0.028(4)	0.051
H(4a)	$0.044(3)$	0.325(2)	0.213(3)	0.020
H(4b)	-0.082(4)	0.294(3)	0.269(3)	0.027
H(5)	0.089(3)	0.272(2)	0.440(3)	0.016
H(6a)	0.310(3)	0.322(2)	$0.334(3)$	0.014
H(6b)	0.346(4)	0.270(3)	0.448(3)	0.045
H(7a)	$0.106(3)$	$0.006(3)$	0.151(3)	0.029
H(7b)	-0.017(4)	0.067(2)	0.075 (3)	0.025
H(9)	-0.009(3)	0.060(2)	0.407(2)	0.004
H(11a)	0.409(3)	0.047(2)	0.381(3)	0.018
H(11b)	0.303(3)	0.002(3)	$0.285(3)$	0.026
H(12a)	-0.221(4)	0.124(3)	0.272(3)	0.031
H(12b)	-0.261(3)	0.029(3)	0.199(3)	0.025
H(12c)	-0.221(4)	0.129(3)	0.144(3)	0.032
H(13a)	0.339(4)	0.112(3)	0.554(3)	0.046
H(13b)	0.286(3)	0.001(3)	0.574(3)	0.032
H(13c)	$0.183(4)$	0.091(3)	0.565(3)	0.033

${ }^{a} U_{\mathrm{eq}}=1 / 3 \sum_{i} \Sigma_{j} U_{i j} a_{i}^{\star} a_{j}^{\star}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$.
$\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}$ (5)
Prepared, as a red-brown solid in 65% yield, by the procedure used for 4 but from $\mathrm{Cr}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}_{2}$ and K -2,4-dimethylpentadienyl in THF. Found: C, 62.0, H, 8.3; $\mathrm{Cl}, 7.2$; $\mathrm{Cr}, 10.3 ; \mathrm{P}, 12.3 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClCrP}_{2}$ calc.: $\mathrm{C}, 60.2 ; \mathrm{H}, 7.3 ; \mathrm{Cl}, 7.7 ; \mathrm{Cr}, 11.3 ; \mathrm{P}$, 13.5\%; contamination with traces of an oil (which could not be removed by repeated recrystallization) leads to some inaccuracy in the analytical data, which nevertheless indicate a $1 / 1 / 2 \mathrm{Cl}: \mathrm{Cr}: \mathrm{P}$ molar ratio.
$\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)$ (6)
To a solution of $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{PMe}_{2}\right) \mathrm{Cl}(3)(0.65 \mathrm{~g}, 1.95 \mathrm{mmol})$ in diethyl ether (50 ml) at $-30^{\circ} \mathrm{C}$ was added dropwise an ethereal solution of allylmagnesium chloride (12 ml of a 0.33 M solution, 3.9 mmol). The mixture was stirred for 24 h , then filtered at $-30^{\circ} \mathrm{C}$, and the filtrate evaporated to dryness under high vacuum. The residue was dissolved in precooled pentane at $-30^{\circ} \mathrm{C}(30$ ml) and the solution was filtered and cooled to $-78^{\circ} \mathrm{C}$ to give the product as red crystals, which were isolated and dried at $-30^{\circ} \mathrm{C}$. Yield 0.54 g (82% theory). Found: C, 56.7, H, 9.6; $\mathrm{Cr}, 15.4$; P, 18.2. $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{CrP}_{2}$ calc.: C, 56.8; H, 9.5; $\mathrm{Cr}, 15.4$; P, 18.3\%. MS ($70 \mathrm{eV}, 120^{\circ} \mathrm{C}$): m/z $338\left(\mathrm{M}^{+}\right.$), 297, 243, 202. IR (KBr): ν 3060, 1490, 1420, 1280, 1210, $940 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (THF- $d_{8},-30^{\circ} \mathrm{C}$): $\delta 4.68(\mathrm{~s}, 6-\mathrm{H})$; 2.52 (m, 2-H); 2.14 (s, 15-H); 1.81 (m, 4s-H); 1.76 (m, 3s-H); 1.64 (d, 9-H); 1.34 (d, $10-\mathrm{H}) ; 1.22(\mathrm{~s}, 17-\mathrm{H}) ; 1.11(\mathrm{~m}, 1 \mathrm{~s}-\mathrm{H}) ; 1.05(\mathrm{~d}, 11-\mathrm{H}) ; 0.81(\mathrm{~d}, 12-\mathrm{H}) ; 0.21(\mathrm{~m}, 1 \mathrm{a}-\mathrm{H})$; $-0.40(\mathrm{~m}, 3 \mathrm{a}-\mathrm{H}) ;-0.52(\mathrm{~m}, 4 \mathrm{a}-\mathrm{H}) ;-1.05(\mathrm{~m}, 8 \mathrm{a}-\mathrm{H}) ;{ }^{3} \mathrm{~J}(1 \mathrm{~s}, 2) \mathrm{ca} 6,{ }^{3} J(1 \mathrm{a}, 2) 8.6$, ${ }^{3} J(2,3 \mathrm{~s})$ са $6,{ }^{3} J(2,3 \mathrm{a}) 9.2,{ }^{3} J(4 \mathrm{a}, 4 \mathrm{~s}) 0,{ }^{3} J(8 \mathrm{a}, 8 \mathrm{~s})$ са $1, J(1 \mathrm{~s}, \mathrm{P}) 10.3, J(1 \mathrm{a}, \mathrm{P}) 5.8$, $\Sigma J(2, \mathrm{P}) 13.4, \Sigma J(3 \mathrm{~s}, \mathrm{P})$ ca $4.5, J(3 \mathrm{a}, \mathrm{P}) 1, J(4 \mathrm{a}, \mathrm{P}) 13.1, J(4 \mathrm{~s}, \mathrm{P}) 6.6, \Sigma J(8 \mathrm{a}, \mathrm{P}) 19.4$, $J(9, \mathrm{P}) 7.1, J(10, \mathrm{P}) 7.6, J(11, \mathrm{P}) 5.7, J(12, \mathrm{P}) 6.1$-numbering scheme shown below. ${ }^{31} \mathrm{P}$ NMR (THF- $d_{8},-30^{\circ} \mathrm{C}$): $\delta 70.1 ; 79.3 ; J(\mathrm{P}, \mathrm{P}) 38.5$.

$\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{3}(8)$
To a solution of $\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ (4) ($3.1 \mathrm{~g}, 9.3 \mathrm{mmol}$) in diethyl ether (50 ml) at $-78^{\circ} \mathrm{C}$ was slowly added an ethereal solution of allylmagnesium chloride (25 ml of a 0.38 M solution, 9.4 mmol). The mixture was stirred at $-30^{\circ} \mathrm{C}$ for 12 h then filtered, and the solvent removed under high vacuum. The residue was dissolved in pentane (30 ml) and the solution was filtered and cooled to $-78^{\circ} \mathrm{C}$ to give the product as red crystals, which were dried and sublimed in high vacuum at $40^{\circ} \mathrm{C}$. M.p. $45-50^{\circ} \mathrm{C}$. Yield 1.9 g (77\% theory). Found: $\mathrm{Cr}, 19.4$; P, 11.3. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{CrP}$ calc.: $\mathrm{Cr}, 19.7$; P, 11.7\%. MS ($70 \mathrm{eV}, 50^{\circ} \mathrm{C}$): $\mathrm{m} / \mathrm{z} 204\left(\mathrm{M}^{+}\right)$, 223, 188, 96. Magn. moment: $\mu_{\text {eff }} 2.7$ BM. IR (KBr): $\nu 3060,3040,1495,1420,1380,1280,950 \mathrm{~cm}^{-1}$. Crystal structure: see text.
$\left(\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{CrPMe}_{2} \mathrm{Ph}$ (9)
This was prepared, as described for 8, as red crystals in 72% yield from (η^{5}-2,4-dimethylpentadienyl) $\mathrm{Cr}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}$ (5) and allylmagnesium chloride in di-
ethyl ether, and isolated by crystallization from pentane at $-78^{\circ} \mathrm{C}$. Found: $\mathrm{C}, 66.0$; $\mathrm{H}, 8.6 ; \mathrm{Cr}, 15.8 ; \mathrm{P}, 9.4 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{CrP}$ calc.: $\mathrm{C}, 66.2 ; \mathrm{H}, 8.3 ; \mathrm{Cr}, 15.9 ; \mathrm{P}, 9.5 \%$.
$\left(\eta^{3}-1-\mathrm{CH}_{2}=\mathrm{CMe}, 2-\mathrm{MeC}_{3} \mathrm{H}_{3}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2}$ (7)
To a suspension of ($\left.\eta^{5}-2,4-\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}$ (4) in ether (100 ml) at $-78^{\circ} \mathrm{C}$ was slowly added an ethereal solution of allylmagnesium chloride $(20 \mathrm{ml}$ of a 0.38 M solution, 7.5 mmol). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 12 h then filtered at $-60^{\circ} \mathrm{C}$, and the filtrate was evaporated to dryness at this temperature. The residue was dissolved in precooled pentane at $-60^{\circ} \mathrm{C}$ and the solution filtered. Cooling the filtrate to $-78^{\circ} \mathrm{C}$ gave the compound as red crystals. Yield 1.4 g (59% theory). Found: C, 55.8; H, 9.4; Cr, 15.5; P, 18.5. $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{CrP}_{2}$ calc.: C, 56.5; H, 10.1 ; $\mathrm{Cr}, 15.3 ; \mathrm{P}, 18.2 \%$. IR (KBr, $-60^{\circ} \mathrm{C}$): $\boldsymbol{\nu} 3060,3040,1640(\mathrm{C}=\mathrm{C}), 1490,1420$, 1380, $1280,960 \mathrm{~cm}^{-1}$.

Table 3
Crystal structure data for $\mathbf{8}^{a}$

Formula	$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{CrP}$
Molecular weight	264.3
Crystal size (mm)	$0.29 \times 0.54 \times 0.14$
Crystal colour	dark red
Crystal system	monoclinic
Space group	P2 $\mathbf{1}^{1 / n}$ (No.14)
$a(\AA)$	9.258(2)
b (A$)$	13.218(3)
$c(\AA)$	12.066(2)
$\beta\left({ }^{\circ}\right.$)	104.90(2)
$V\left(\dot{R}^{3}\right)$	1426.9
2	4
Calculated density ($\mathrm{g} \cdot \mathrm{cm}^{-3}$)	1.23
$\mu\left(\mathrm{cm}^{-1}\right)$	8.65
Mo-K ${ }_{\text {a }}$-radiation ((\AA)	0.71069
$F(000)(\mathrm{e})$	568
Temperature (K)	100
Diffractometer	Enraf-Nonius CAD4
Scan mode	$\omega-2 \theta$
$[(\sin \theta) / \lambda]_{\text {max }}\left(\mathrm{A}^{-1}\right)$	0.65
Total number of reflections ($\pm h, \pm k,+l$)	6776
Independent reflections	3233
Observed reflections [$I>\mathbf{2 \sigma}(I)$]	2641
Refined parameters	236
R	0.040
$R_{w}\left(w=1 / \sigma^{2}\left(F_{o}\right)\right)$	0.046
Error of fit	2.1
Residual electron density ($\mathrm{e} \AA^{-3}$)	0.91
Method of structure solution	heavy atom

H -atom positions located and refined isotropically

[^1]$C p\left(\eta^{3}-C_{3} H_{5}\right) C r\left(P M e_{3}\right)_{2}(12)$
A solution of $\mathrm{Cr}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{2}$, prepared from $\mathrm{Cr}(\mathrm{THF}) \mathrm{Cl}_{2}(1.17 \mathrm{~g}, 6.0 \mathrm{mmol})$ and $\mathrm{PMe}_{3}(1.25 \mathrm{ml}, 12.0 \mathrm{mmol})$ in THF (70 ml), was cooled to $-78^{\circ} \mathrm{C}$ and a THF solution of $\mathrm{NaCp} \cdot$ THF ($20 \mathrm{ml}, 5.9 \mathrm{mmol}$) was added slowly. The mixture was stirred for 3 h then warmed to $-30^{\circ} \mathrm{C}$ and an ethereal solution of allylmagnesium chloride (16 ml of a 0.38 M solution, 6.0 mmol) was added during 1 h . The mixture was stirred at $-30^{\circ} \mathrm{C}$ for a further 12 h then filtered and the filtrate was evaporated to dryness under high vacuum. The residue was extracted at $-30^{\circ} \mathrm{C}$ with precooled pentane and the extract cooled to $-78^{\circ} \mathrm{C}$ to give the product as red crystals, which were washed at $-78^{\circ} \mathrm{C}$ with pentane and dried under high vacuum at this temperature. Yield 0.8 g (43% theory). Found: C, $54.1 ; \mathrm{H}, 9.1$; $\mathrm{Cr}, 16.8$; P, 19.9. $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{CrP}_{2}$ calc.: $\mathrm{C}, 54.2 ; \mathrm{H}, 9.1 ; \mathrm{Cr}, 16.8 ; \mathrm{P}, 20.0 \%$. IR (KBr): $\nu 3110,3065$, $1455,1420,1180,1110,1000,940 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (THF- $d_{8},-30^{\circ} \mathrm{C}$): $\nu 3.68$ (t, $4-\mathrm{H}) ; 2.27(\mathrm{~m}, 2-\mathrm{H}) ; 1.62(\mathrm{~m}, 1 \mathrm{~s}-\mathrm{H}) ; 1.12(\mathrm{t}, 5-\mathrm{H}) ; 0.96(\mathrm{~m}, 1 \mathrm{a}-\mathrm{H}) ;{ }^{3} J(1 \mathrm{a}, 2) 8.7$, ${ }^{3} J(1 \mathrm{~s}, 2)$ ca $5.5,{ }^{4} J(4, \mathrm{P}) 2.0, \Sigma J(5, \mathrm{P}) 6.2, \Sigma J(1 \mathrm{~s}, \mathrm{P})$ ca $14, \Sigma J(1 \mathrm{a}, \mathrm{P}) 5.6, J(2, \mathrm{P})$ ca 5.5 —numbering scheme shown below. ${ }^{31} \mathrm{P}$ NMR (THF- $d_{8},-30^{\circ} \mathrm{C}$): δ 49.39.

Crystal structure determination
Atomic fractional coordinates for 8 are listed in Table 2 and crystal structure data are given in Table 3.

References

1 U. Giannini, E. Pellino and M.P. Lachi, J. Organomet. Chem., 12 (1968) 551.
2 C.F. Campana, R.D. Ernst, D.R. Wilson and J.Z. Liu, Inorg. Chem., 23 (1984) 2732.
3 T.D. Newbound, J.W. Freeman, D.R. Wilson, M.S. Kralik, A.T. Patton, C.F. Campana and R.D. Ernst, Organometallics, 6 (1987) 2432.
4 J.W. Freeman, D.R. Wilson, R.D. Ernst, P.D. Smith, D.P. Klendworth and M.P. McDaniel, J. Polym. Sci., Polym. Chem., 25 (1987) 2063.
5 P.D. Smith and M.F. McDaniel, J. Polym. Sci., Polym. Chem., 27 (1989) 2695.
6 E.A. Benham, P.D. Smith, E.T. Hsieh and M.P. McDaniel, J. Macromol. Sci., Chem., 25 (1988) 259.
7 R.D. Ernst, Acc. Chem. Res., 18 (1985) 56.
8 P. Betz, P.W. Jolly, C. Krüger and U. Zakrzewski, Organometallics, in press.
9 J.R. Bleeke and D.J. Rauscher, Organometallics, 7 (1988) 2328.
10 L. Stahl and R.D. Ernst, J. Am. Chem. Soc., 109 (1987) 5673.
11 H. Yasuda, Y. Ohnuma, M. Yamauchi, H. Tani and A. Nakamura, Bull. Chem. Soc. Jpn., 52 (1979) 2036.

[^0]: * For Part III see ref. 8.

[^1]: ${ }^{a}$ Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 EggensteinLeopoldshafen 2, Germany, on quoting the depository number CSD-55193, the names of the authors, and the journal citation.

